Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	Correct answer with or without working scores 2 marks		2
	$[H^+] = (1.00 \times 10^{-14} / 0.250) = 4 \times 10^{-14}$ (1)		
	pH = (13.39794 =) 13.4 (1)		
	OR		
	pOH = -log 0.250 = 0.602 (1)		
	pH = (13.39794 =)13.4 (1)		
	ALLOW TE in second mark if error in [H ⁺] calculation gives pH more than 7 3 or more sf IGNORE rounding errors e.g. accept 13.39		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	$(K_a =) [CH_3COO^{-}][H^{\pm}]$ (1) [CH ₃ COOH]	<u>[H</u> ±]² [CH₃COOH]	1
	ALLOW H ₃ 0 ⁺ instead of H ⁺ [A=][H [±]] if key to symbols given [HA] IGNORE state symbols		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iii)	Correct answer with or without working scores 2 marks		2
	1.7 x $10^{-5} = \frac{[H^{\pm}]^2}{0.125}$ (1)		
	$[H^+] = 1.46 \times 10^{-3}$ pH = 2.84/2.8 (1)		
	no TE from an incorrect [H ⁺]		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iv)	pH = 4.8 / 4.77 (1)		2
	pH = p K_a / [H ⁺] = K_a (when acid is half neutralized) (1)	$H^+ = K_a$	

Question Number	Acceptable Answers	Reject	Mark
1 (a)(v)	Sigmoid curve starting between pH 2 and 4 (2.8), ending between pH 12 and 14 inclusive (1) with steep rise (may be vertical or gently sloping) of between 3 - 7 units between pH 6 and 12. Sloping section should not extend over more than 5cm³. (1) When 12.5 cm³, NaOH added. (1) ALLOW tolerance for grid Reverse curves lose first mark		3

Question Number	Acceptable Answers	Reject	Mark
1 (a)(vi)	First mark Thymolphthalein more suitable as it changes (from colourless to blue) in steep region of titration (pH 8.3 to 10.6)/ at the equivalence point / at the end point OR thymolphthalein has pH range in steep region of titration (1)		2
	Second mark Methyl yellow changes (from red to yellow at pH 2.9 to 4) before equivalence point / before the end point / doesn't change in steep section OR Methyl yellow has pH range before / outside steep region of titration (1)		
	ALLOW 'Thymolphthalein more suitable as it changes at the equivalence point but methyl yellow does not.' This scores 2 marks		
	OR		
	First mark pK _{in} ± 1 must lie within vertical region on titration curve (1)		
	Second mark hence thymolphthalein is suitable and methyl yellow is not (1)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)	Sodium ethanoate/ CH ₃ COONa Potassium ethanoate / CH ₃ COOK ALLOW other cations as alternatives to sodium	Use of sodium hydroxide (because it's in food)	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	$K_{W} = [H^{+}] \times [OH^{-}]$ OR $K_{W} = [H_{3}O^{+}] \times [OH^{-}]$ State symbols are not required IGNORE any incorrect state symbols	Inclusion of [H ₂ O]	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	FIRST, CHECK THE FINAL ANSWER IF answer pH = 11.875 / 11.88 / 11.9 /12 award 2 marks		2
	IGNORE sf except 1 sf		
	$[H^{+}] = \underbrace{K_{W}}_{[OH^{-}]} = \underbrace{1.00 \times 10^{-14}}_{0.00750}$ $= 1.3333 \times 10^{-12}$ $= 1.33 \times 10^{-12} \text{ (1)}$ $\text{(mol dm}^{-3}\text{)}$ $\text{ALLOW first mark for just}$ $[H^{+}] = \underbrace{K_{W}}_{[OH^{-}]}$		
	$pH = -log_{10} [H^+] = 11.875$		
	= 11.88 / 11.9		
	OR (1)		
	$pOH = -log_{10} [OH^{-}] = 2.12$ (1) $pH = pK_W - pOH$		
	pH = 11.88 / 11.9 (1)		
	Second mark only awarded CQ if pH between 8 and 14		

Question Number	Acceptable Answers	Reject	Mark
2(b))	First mark Moles NaOH = 0.00750×20.0 1000 = 1.50×10^{-4} (mol) (1)		2
	(Since HCOOH : NaOH ratio is 1:1) Second mark		
	[HCOOH(aq)] = $\frac{1.50 \times 10^{-4}}{0.0250}$ OR = $1.50 \times 10^{-4} \times \frac{1000}{25.0}$ (= $6.00 \times 10^{-3} \text{ mol dm}^{-3}$)		
	ALTERNATIVE APPROACH: Use of an expression such as 0.00750 x 20.0 = 25 x y (1)		
	$y = \frac{0.00750 \times 20.0}{25}$ (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	(Weak) dissociates / ionizes to a small extent		2
	OR dissociate / ionizes partially OR dissociates / ionizes incompletely OR does not fully dissociate / ionize OR forms an equilibrium when reacted with water (1)	'not easily dissociated'	
	(Acid) proton donor ALLOW 'proton donator' OR produces / releases H ⁺ ions OR produces / releases H ₃ O ⁺ ions (1) Ignore reference to typical acid reactions		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	(K _a =) [HCOO ⁻] [H ⁺] [HCOOH] State symbols are NOT required IGNORE any incorrect state symbols	$(K_a =) \frac{[H^+]^2}{[HCOOH]}$ Inclusion of $[H_2O]$	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	IGNORE sf except 1 sf THROUGHOUT FIRST, CHECK THE FINAL ANSWER IF answer $K_a = 1.59 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$ award the first two 2 marks $[\text{H}^+] \ (= 10^{-\text{pH}} = 10^{-3.01})$ = 9.77 x $10^{-4} \text{ (mol dm}^{-3}\text{)}$ (1) $K_a = \frac{[\text{H}^+]^2}{[\text{HCOOH}]}$ $K_a = \frac{(9.77 \times 10^{-4})^2}{6.00 \times 10^{-3}}$		4
	$= 1.59 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$ $= 1.59 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$ (1) Assumption 1 $[H^{+}] = [HCOO^{-}]$ OR $no H^{+} \text{ from the (ionization of) water}$ OR $H^{+} \text{ only from the acid}$ (1)	If incorrect units max 1	
	Assumption 2 Ionization of the (weak) acid is negligible / very small / insignificant OR [HCOOH] _{in tial} -x = [HCOOH] _{eqm} OR [HCOOH] _{eqm} = [HCOOH] _{initial} OR [HCOOH] _{eqm} = 6.00 x 10 ⁻³ (mol dm ⁻³) OR [H ⁺] << [HA] (1)	Just 'partial' / 'incomplete' Or ' no dissociation'	
	Assumptions can be in either order		

2 (c)(iii)	OR	
cont'd	$[H^+]$ (= 10^{-pH} = $10^{-3.01}$)	
	$= 9.77 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$	
	(1)	
	$K_a = \frac{[H^+]^2}{}$	
	[HCOOH]	
	$K_a = \frac{(9.77 \times 10^{-4})^2}{(6.00 \times 10^{-3} - 9.77 \times 10^{-4})}$	
	$= 1.90 \times 10^{-4} \text{ (mol dm}^{-3}\text{)}$	
l	= 1.90 x 10 (moram) (1)	
	Assumption	
	$[H^+] = [HCOO^-]$	
	OR	
	no [H ⁺] from the (ionization of) water	
	OR	
	H ⁺ only from the acid	
	(1)	
	Ignore references to constant temperature	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	(Ka =) [H ⁺][C ₆ H ₅ COO ⁻]/[C ₆ H ₅ COOH] Penalise missing charges ALLOW [H ₃ O ⁺] in place of [H ⁺] IGNORE state symbols and units even if incorrect	$Ka = [H^+]^2/[C_6H_5COOH]$	1

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	[H ⁺] = $\sqrt{(6.3 \times 10^{-5} \times 0.0025)}$ (1) pH = $-\log \sqrt{(6.3 \times 10^{-5} \times 0.0025)}$		2
	= 3.4 (1)	answer if units given	
	Answer without working scores (2) marks 6.8 scores (1) IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
3(b)	(pH) range (of indicator) 3.8 to 5.4 OR $pK_{in} = 4.7$ (1) Bubble bath is (initially yellow since) pH less than 3.8 / is 3.4 (1)	Water neutralizes	4
	Adding of water/dilution (of acid) causes pH to rise/ means $[H^+]$ decreases (1) Hence pH rises to ≥ 5.4 so blue/changes colour (1)	acid	
	If a(ii) pH>3.8 and <5.4 then loses second marking point but can score other marking points. If a(ii) pH>5.4 then can score first and third marking points only		

Question Number	Acceptable Answers	Reject	Mark
18 (a)	pH = (-log 0.25) = 0.602 / 0.60 / 0.6 Ignore significant figures		1

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	$(K_a =) [H^+][CH_3CH_2COO^-]$ $[CH_3CH_2COOH]$	Wrong / missing charge on CH ₃ CH ₂ COO	1
	ALLOW [H₃O ⁺] for [H ⁺]	$K_a = \frac{[H^+]^2}{[CH_3CH_2COOH]}$	
	ALLOW C ₂ H ₅ for CH ₃ CH ₂	unless full expression also given	
	ALLOW [H ⁺][A ⁻] if HA and A ⁻ identified [HA]	5	

Question Number	Acceptable Answers		Reject	Mark
18 (b) (ii)	1.3 x $10^{-5} = \frac{[H^+]^2}{0.25}$ / rearrangement of this expre	ession (1)		2
	$([H^+] = 1.8 \times 10^{-3})$			
	pH = 2.74	(1)		
	Correct answer with no working scores (2) No TE for incorrect [H ⁺]			
	Ignore significant figures except 1 Minimum of 1 decimal place needed			

Question Number	Acceptable Answers	Reject	Mark
18 (c) (i)	$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^{(-)}Na^{(+)} + H_2O$	Equations for ethanoic acid	1
	OR $CH_3CH_2COOH + OH^- \rightarrow CH_3CH_2COO^- + H_2O$		
	Accept CH ₃ CH ₂ CO ₂ H, C ₂ H ₅ COOH, C ₂ H ₅ CO ₂ H		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (ii)	1.3 x $10^{-5} = \frac{[H^+][5 \times 10^{-2}]}{[7.5 \times 10^{-2}]}$ (concentration ratio)		2
	OR		
	1.3 x $10^{-5} = \frac{[H^+](1 \times 10^{-3})}{(1.5 \times 10^{-3})}$ (ratio by moles) (ratio by moles allowed as volumes acid and salt equal) (1)		
	$([H^+] = 1.95 \times 10^{-5})$		
	pH = 4.7 / 4.7099654 (1)		
	Second mark dependent on first Correct answer with or without working (2)		
	OR		
	pH = pK _a -log $(\frac{1.5 \times 10^{-3}}{1 \times 10^{-3}})$		
	OR		
	pH = pK _a -log $(\frac{7.5 \times 10^{-2}}{5 \times 10^{-2}})$ (1)		
	pH = 4.7 (1)		
	Correct answer with or without working (2)		
	Accept any value which rounds to 4.7		

Question Number	Acceptable Answers		Reject	Mark
*18 (c) (iii)	Mixture is a buffer	(1)		3
	EITHER			
	OH⁻ combines with H⁺ in solution	(1)	NaOH combines	
	Propanoic acid dissociates to replace H ⁺ Correct equations could gain these marks	(1)		
	OR			
	OH ⁻ reacts with propanoic acid Correct equation could gain this mark	(1)		
	Significant quantities of weak acid and sal both present /ratio of acid and salt does n	ot		
	change	(1)		
	ALLOW a reservoir of weak acid and salt a present: Allow conjugate base for salt	re		

Question Number	Acceptable Answers	Reject	Mark
18 (c) (iv)	S-shaped curve, vertical at 25 cm ³ (with kink at start) (1)		3
	Starting at pH 2-3 (TE from (b)(ii), finishing at pH 12 -13 (1)		
	Vertical section between 3 and 6 units high centred round a pH of between 8 and 9 (1)		
	Vertical section should not extend over more than $\pm 2.5 \text{cm}^3$ This section should start between 5.5 and 7.5 and finish between 9.5 and 11.5 but do not penalise for very small differences.		
	Reverse curve maximum 2		

Question Number	Acceptable Answers		Reject	Mark
18 (c) (v)	Either Need indicator changing in vertical region of curve / need indicator changing where pH changes sharply / bromocresol green changes before the vertical region Not bromocresol green which changes at 3.8 - 5.4 OR	(1) (1)	Just "the equivalence point is outside the bromocresol green range"	2
	pK_{in} ±1 must be in vertical section / sharply changing section Not bromocresol green because pK_{in} is 4.7 TE from curve with vertical section including 3.7 - 5.7	(1) (1) pH		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (i)	Dilute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H ⁺	NaOH alone water any weak acid concentrated sulfuric acid HCN acid hydrolysis alone	1

Question Number	Acceptable Answers	Reject	Mark
18 (d) (ii)	$CH_3CH_2COCl + H_2O \rightarrow CH_3CH_2COOH + HCl / $ $C_2H_5COCl + H_2O \rightarrow C_2H_5COOH + HCl$	Equations with NaOH or OH	1
	Accept displayed formula		

Question Number	Acceptable Answers	Reject	Mark
18 (d) (iii)	Colour change orange to green / blue		1

Question Number	Acceptable Answers	Reject	Mark
18 (e)	Reducing agent /Reduction (of the acid) occurs (1)		2
	Li Al H_4 / lithium tetrahydridoaluminate / lithium aluminium hydride (1)	Lithal without correct name or formula	
	Allow minor error in name if correct formula is given		
	Ignore solvent		
	ALLOW nucleophile AND H ⁻ for 1 mark		

Question Number	Acceptable Answers	Reject	Mark
5 (a)(i)	$(pH =) -log [H^+]$ OR $(pH =) -log [H_3O^+]$ OR	Just "concentration of hydrogen ions" { } curly brackets -log H ⁺	1
	Accept Definition in words (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration") Base 10 does not have to be there, but reject "In"	-tog n	

Question Number	Acceptable Answers	Reject	Mark
5 (a)(ii)	$(pH = -log \ 0.0100) = 2(.00)$	If any units given	1

Question	Acceptable Answers	Reject	Mark
Number	[11 0+1 1/ [C]] COOUT		
5 (b)(i)	$[H_3O^+] = \underline{K_a[CH_3COOH]}$ $[CH_3COO^-]$		4
	OR		
	[H3O+]2 = Ka[CH3COOH] (1)		
	ALLOW		
	[HA] for [CH ₃ COOH] and [A ⁻] for [CH ₃ COO ⁻] in rearranged expression		
	Accept [H ⁺] for [H ₃ O ⁺]		
	∴[H_3O^+] = $\sqrt{1.75 \times 10^{-7}}$ OR		
	$\therefore [H_3O^+] = 4.18(3) \times 10^{-4} \text{ (mol dm}^{-3})$ (1)		
	pH = 3.38 / 3.4 (1) ignore sf except one sf	3.37 / 3 /3.39 / a correct pH value with	
	Third mark TE from [H ⁺] only if pH less than 7	units	
	N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3)		
	Assumption assumes that degree of ionisation of the acid is very small/negligible OR [CH ₃ COOH] _{eqm} =[CH ₃ COOH] _{initial}	just "weak acid" / just "partially dissociates" / acid does not dissociate /	
	OR [H ⁺] = [CH ₃ COO ⁻] OR	[CH ₃ COOH] constant	
	all of the hydrogen ions come from the acid / ignore hydrogen ions from the water (1)	[H ⁺] = [OH ⁻] / [H ⁺] = [salt]	
	IGNORE any references to temperature		

Question Number	Acceptable Answers	Reject	Mark
5 (b)(ii)	First mark:		2

5 (b)(ii) First mark:

> (Dilution/addition of water) shifts the equilibrium

$$CH_3COOH$$
 \Rightarrow $CH_3COO^- + H^+/$

$$CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$$

to the **right**

OR

the above stated in words such as: degree of dissociation increases/ proportion of dissociation increases/ more dissociation (as the ethanoic acid is diluted) (1)

Second mark:

so the [H⁺] is greater than expected/ so the decrease in $[H^{\dagger}]$ is less than expected / so that the decrease in [H⁺] is less than that for hydrochloric acid

Each mark is a stand alone mark.

ALTERNATIVE ROUTE:

First mark:

$$[H^{+}] = \int K_{a} \times [HA] \quad OR \quad (K_{a} \times [HA])^{\frac{1}{2}}$$

$$OR$$

$$pH = \frac{1}{2}pK_{a} - \frac{1}{2}log[HA]$$

Second mark:

use of mathematical expression given (e.g.[H⁺] affected by factor of 1/√10 on dilution OR substitution of numerical values into the equation)

(1)

(1)

IGNORE: any comments or calculations relating to HCl(aq)

Reject just a reference to a 0.5 increase in pH for CH₃COOH(aq) compared with a 1.0 increase in pH for HCl(aq)

Question Number	Acceptable Answers		Reject	Mark
5 (c)(i)	These marks are stand alone. Maintains an almost constant pH / resists change(s) in pH	(1)	"resists small change(s) in pH" OR "pH does not change"	2
	for small addition of H ⁺ or OH ⁻ ions (N.B. both ions needed) / for small additions of acid or alkali / for small additions of acid or base	n (1)		
	IGNORE any references to named buffer mixtures			

Question Number	Acceptable Answers	Reject	Mark
5 (c)(ii)	citric acid		1

Question Number	Acceptable Answers	Reject	Mark
5 (c)(iii)	First mark: (buffer contains) reservoir of HA and A⁻ OR (buffer contains) large concentrations of [HA] and [A⁻] OR both equations: HA = A⁻ + H⁺ and NaA → Na⁺ + A⁻ Second mark: (Addition of alkali/base) HA + OH⁻ → A⁻ + H₂O OR description/equations to show that H⁺ reacts with OH⁻ (to form H₂O) and more acid dissociates (to replace H⁺) Third mark: (Addition of acid) A⁻ + H⁺ → HA OR A⁻ reacting with H⁺ in any context described in words (e.g. by reference to weak acid equilibrium) (1)	JUST NaA = Na ⁺ + A ⁻ and HA → H ⁺ + A ⁻ without correct description	4
	Fourth mark: the ratio of [A-]+[HA] hardly changes / the ratio of [HA]+ [A-] hardly changes OR [A-] nor [HA] changes significantly (1)	Just [H ⁺] remains constant	